Рейтинг:2

Реконструкция секретных долей shamir в присутствии злоумышленников

флаг sy

Предположим, у нас есть (t,n) схема обмена секретами Шамира. Значение некоторого вычисления делится с n сторонами, где не более $t-1$ партии злонамеренны. Какова наилучшая стратегия восстановления акций? Я считаю, что мы можем использовать исправления ошибок Рида-Соломона, чтобы получить значение до t<n/3. Для t<n/2 мы можем случайным образом восстановить $к$ раз используя $t$ акций и проверьте значение, которое появляется наибольшее количество раз. Есть ли что-нибудь лучше этого?

Рейтинг:1
флаг ru

Более сильный подход заключается в использовании Алгоритм декодирования списка Гурусвами-Судана. Если у вас есть $м$ акций, то их алгоритм полиномиальной реконструкции вернет все полиномы степени не выше $t$ такой, что по крайней мере $к$ долей удовлетворяют многочлену при условии, что $k>\sqrt{км}$. Как $м-т+1$ растет относительно $t$, количество спорадических ложных срабатываний уменьшится (обратите внимание, что если количество честных сторон близко к количеству нечестных сторон, существует значительная вероятность того, что мы не можем однозначно восстановить полином, но можем включить его в относительно короткий список возможностей ).

Ответить или комментировать

Большинство людей не понимают, что склонность к познанию нового открывает путь к обучению и улучшает межличностные связи. В исследованиях Элисон, например, хотя люди могли точно вспомнить, сколько вопросов было задано в их разговорах, они не чувствовали интуитивно связи между вопросами и симпатиями. В четырех исследованиях, в которых участники сами участвовали в разговорах или читали стенограммы чужих разговоров, люди, как правило, не осознавали, что задаваемый вопрос повлияет — или повлиял — на уровень дружбы между собеседниками.